one or sub population - known test performance - posterior distribution of prevalence. source here

sample_posterior_r_mcmc_hyperR(samps, posi, ni, se, sp, gam0)

Arguments

samps

number of MCMC samples desired

posi

number of positive tests population

ni

number of total tests in population

se

known sensitivity of test

sp

known specificity of test

gam0

hyperprior variance parameter

Value

Prevalence posterior distribution

Functions

  • sample_posterior_r_mcmc_hyperR: sub population - known test performance - posterior distribution of prevalence. source here

References

Larremore, D. B., Fosdick, B. K., Bubar, K. M., Zhang, S., Kissler, S. M., Metcalf, C. J. E., ... & Grad, Y. (2020). Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys. medRxiv. doi: https://doi.org/10.1101/2020.04.15.20067066

Examples

if (FALSE) { library(tidyverse) library(skimr) sensitivity = 0.93 specificity = 0.975 positive_pop <- c(321, 123, 100, 10) negative_pop <- c(1234, 500, 375, 30) # __ ONE-POP --------------------------------------------------------------- # reproduce this # https://github.com/LarremoreLab/covid_serological_sampling/ # codebase/prevalence_onepopulation_workbook.ipynb # input for reproducible examples result_one <- sample_posterior_r_mcmc_hyperR(samps = 10000, posi = positive_pop[1], ni = negative_pop[1], # se = sensitivity, # sp = specificity, se = 0.977, sp = 0.986, gam0 = 150 ) # reproducible example 00 result_one %>% as_tibble() result_one %>% skim() result_one %>% as_tibble() %>% ggplot(aes(x = r1)) + geom_histogram(aes(y=..density..),binwidth = 0.005) # __ SUB-POPS -------------------------------------------------------------- # reproduce this # https://github.com/LarremoreLab/covid_serological_sampling/ # codebase/prevalence_subpopulations_workbook.ipynb result_sub <- sample_posterior_r_mcmc_hyperR(samps = 10000, posi = positive_pop, ni = positive_pop+negative_pop, se = sensitivity, sp = specificity, # se = 0.977, # sp = 0.986, gam0 = 150 ) # reproducible example result_sub %>% as_tibble() result_sub %>% skim() result_sub %>% as_tibble() %>% rownames_to_column() %>% select(-gam) %>% pivot_longer(cols = -rowname,names_to = "estimates",values_to = "values") %>% ggplot(aes(x = values, color = estimates)) + geom_density() }