sample_posterior_r_mcmc_testun.Rd
one population - unknown test performance - posterior distribution of prevalence. source here
sample_posterior_r_mcmc_testun(samps, pos, n, tp, tn, fp, fn)
samps | number of MCMC samples desired |
---|---|
pos | number of positive tests population |
n | number of total tests in population |
tp | true positive tests in the lab |
tn | true negative tests in the lab |
fp | false positive tests in the lab |
fn | false negative tests in the lab |
Prevalence posterior distribution
sample_posterior_r_mcmc_testun
: one population - unknown test performance - posterior distribution of prevalence. source here
Larremore, D. B., Fosdick, B. K., Zhang, S., & Grad, Y. H. (2020). Jointly modeling prevalence, sensitivity and specificity for optimal sample allocation. bioRxiv. doi: https://doi.org/10.1101/2020.05.23.112649
if (FALSE) { library(tidyverse) library(skimr) sensitivity = 0.93 specificity = 0.975 positive_pop <- c(321, 123, 100, 10) negative_pop <- c(1234, 500, 375, 30) positive_pop[1]/negative_pop[1] posi <- c(2485713, 692) total <- c(11609844, 3212) nega <- total - posi posi/total posi/nega nt <- 2 result_unk <- sample_posterior_r_mcmc_testun(samps = 10000, #in population pos = posi[nt], #positive_pop[1], #positive # n = nega[nt], #negative_pop[1], #negatives n = total[nt], #negative_pop[1], #negatives # in lab tp = 30,tn = 50,fp = 0,fn = 0 # tp = 670,tn = 640,fp = 202,fn = 74 ) # reproducible example YY result_unk %>% as_tibble() %>% skim() result_unk %>% as_tibble() %>% ggplot(aes(x = r)) + geom_histogram(aes(y=..density..),binwidth = 0.005) + geom_density() result_unk %>% as_tibble() %>% rownames_to_column() %>% pivot_longer(cols = -rowname,names_to = "estimates",values_to = "values") %>% ggplot(aes(x = values)) + geom_histogram(aes(y=..density..),binwidth = 0.005) + geom_density() + facet_grid(~estimates,scales = "free_x") }