one population - unknown test performance - posterior distribution of prevalence. source here

sample_posterior_r_mcmc_testun(samps, pos, n, tp, tn, fp, fn)

Arguments

samps

number of MCMC samples desired

pos

number of positive tests population

n

number of total tests in population

tp

true positive tests in the lab

tn

true negative tests in the lab

fp

false positive tests in the lab

fn

false negative tests in the lab

Value

Prevalence posterior distribution

Functions

  • sample_posterior_r_mcmc_testun: one population - unknown test performance - posterior distribution of prevalence. source here

References

Larremore, D. B., Fosdick, B. K., Zhang, S., & Grad, Y. H. (2020). Jointly modeling prevalence, sensitivity and specificity for optimal sample allocation. bioRxiv. doi: https://doi.org/10.1101/2020.05.23.112649

Examples

if (FALSE) { library(tidyverse) library(skimr) sensitivity = 0.93 specificity = 0.975 positive_pop <- c(321, 123, 100, 10) negative_pop <- c(1234, 500, 375, 30) positive_pop[1]/negative_pop[1] posi <- c(2485713, 692) total <- c(11609844, 3212) nega <- total - posi posi/total posi/nega nt <- 2 result_unk <- sample_posterior_r_mcmc_testun(samps = 10000, #in population pos = posi[nt], #positive_pop[1], #positive # n = nega[nt], #negative_pop[1], #negatives n = total[nt], #negative_pop[1], #negatives # in lab tp = 30,tn = 50,fp = 0,fn = 0 # tp = 670,tn = 640,fp = 202,fn = 74 ) # reproducible example YY result_unk %>% as_tibble() %>% skim() result_unk %>% as_tibble() %>% ggplot(aes(x = r)) + geom_histogram(aes(y=..density..),binwidth = 0.005) + geom_density() result_unk %>% as_tibble() %>% rownames_to_column() %>% pivot_longer(cols = -rowname,names_to = "estimates",values_to = "values") %>% ggplot(aes(x = values)) + geom_histogram(aes(y=..density..),binwidth = 0.005) + geom_density() + facet_grid(~estimates,scales = "free_x") }