serosvy_unknown_sample_posterior.Rd
one population - unknown test performance - posterior distribution of prevalence. source here
serosvy_unknown_sample_posterior(positive_number_test, total_number_test, true_positive, true_negative, false_positive, false_negative) serosvy_unknown_sample_posterior_ii(positive_number_test, total_number_test, true_positive, true_negative, false_positive, false_negative)
positive_number_test | number of positive tests population |
---|---|
total_number_test | number of total tests in population |
true_positive | true positive tests in the lab |
true_negative | true negative tests in the lab |
false_positive | false positive tests in the lab |
false_negative | false negative tests in the lab |
tibble of prevalence posterior distribution
serosvy_unknown_sample_posterior
: one population - unknown test performance - posterior distribution of prevalence. source here
serosvy_unknown_sample_posterior_ii
: takes known sensitivity and specificity of test and returns proportion of sample that 'true' positive
Larremore, D. B., Fosdick, B. K., Zhang, S., & Grad, Y. H. (2020). Jointly modeling prevalence, sensitivity and specificity for optimal sample allocation. bioRxiv. doi: https://doi.org/10.1101/2020.05.23.112649
if (FALSE) { library(tidyverse) library(skimr) sensitivity = 0.93 specificity = 0.975 positive_pop <- c(321, 123, 100, 10) negative_pop <- c(1234, 500, 375, 30) result_unk_x <- serosvy_unknown_sample_posterior( positive_number_test = positive_pop[1], total_number_test = positive_pop[1]+negative_pop[1], true_positive = 670, true_negative = 640, false_positive = 202, false_negative = 74) result_unk_x %>% unnest(summary) # result_unk_x %>% # unnest(performance) #result_unk_x %>% # unnest(posterior) %>% # as_tibble() %>% # rownames_to_column() %>% # select(-summary) %>% # pivot_longer(cols = -rowname,names_to = "estimates",values_to = "values") %>% # ggplot(aes(x = values)) + # geom_histogram(aes(y=..density..),binwidth = 0.005) + # geom_density() + # facet_grid(~estimates,scales = "free_x") # ------------------------------------------------------ result_unk_x <- serosvy_unknown_sample_posterior_ii( positive_number_test = positive_pop[1], total_number_test = positive_pop[1]+negative_pop[1], true_positive = 670, true_negative = 640, false_positive = 202, false_negative = 74) result_unk_x %>% unnest(summary) result_unk_x %>% unnest(performance) result_unk_x %>% select(posterior) %>% unnest(posterior) %>% rownames_to_column() %>% pivot_longer(cols = -rowname,names_to = "estimates",values_to = "values") %>% ggplot(aes(x = values)) + geom_histogram(aes(y=..density..),binwidth = 0.005) + geom_density() + facet_grid(~estimates,scales = "free_x") }